서문
역자 서문
총정리 - 애니메이션으로 보는 선형대수
0장 왜 선형대수를 배워야 하는가?
__0.1 공간이라고 생각하면 직관이 먹힌다
__0.2 근사 수단으로 사용하기 편리하다
1장 벡터·행렬·행렬식 - ‘공간’에서 생각하자
__1.1 벡터와 공간
____1.1.1 우선적인 정의: 수치의 조합을 정리하여 나타내는 기법
____1.1.2 ‘공간’의 이미지
____1.1.3 기저
____1.1.4 기저가 되기 위한 조건
____1.1.5 차원
____1.1.6 좌표에서의 표현
__1.2 행렬과 사상
____1.2.1 우선적인 정의: 순수한 관계를 나타내는 편리한 기법
____1.2.2 여러 가지 관계를 행렬로 나타내다 (1)
____1.2.3 행렬은 사상이다
____1.2.4 행렬의 곱 = 사상의 합성
____1.2.5 행렬 연산의 성질
____1.2.6 행렬의 거듭제곱 = 사상의 반복
____1.2.7 영행렬, 단위행렬, 대각행렬
____1.2.8 역행렬 = 역사상
____1.2.9 블록행렬
____1.2.10 여러 가지 관계를 행렬로 나타내다 (2)
____1.2.11 좌표 변환과 행렬
____1.2.12 전치행렬 = ? ? ?
____1.2.13 보충 (1) 크기에 집착하라
____1.2.14 보충 (2) 성분으로 말하면
__1.3 행렬식과 확대율
____1.3.1 행렬식 = 부피 확대율
____1.3.2 행렬식의 성질
____1.3.3 행렬식의 계산법 (1) 수식 계산▽
____1.3.4 행렬식의 계산법 (2) 수치 계산▽
____1.3.5 보충: 여인수 전개와 역행렬▽
2장 랭크·역행렬·일차방정식 - 결과에서 원인을 구하다
__2.1 문제 설정: 역문제
__2.2 성질이 좋은 경우(정칙행렬)
____2.2.1 정칙성과 역행렬
____2.2.2 연립일차방정식의 해법(정칙인 경우)▽
____2.2.3 역행렬의 계산▽
____2.2.4 기본변형▽
__2.3 성질이 나쁜 경우
____2.3.1 성질이 나쁜 예
____2.3.2 성질의 나쁨과 핵•상
____2.3.3 차원 정리
____2.3.4 ‘납작하게’를 식으로 나타내다(선형독립, 선형종속)
____2.3.5 단서의 실질적인 개수(랭크)
____2.3.6 랭크 구하는 방법 (1) 눈으로
____2.3.7 랭크 구하는 방법 (2) 손 계산▽
__2.4 성질의 좋고 나쁨의 판정(역행렬이 존재하기 위한 조건)
____2.4.1 ‘납작하게 눌리는가’가 포인트
____2.4.2 정칙성과 같은 조건 여러 가지
____2.4.3 정칙성의 정리
__2.5 성질이 나쁜 경우의 대책
____2.5.1 구할 수 있는 데까지 구한다 (1) 이론편
____2.5.2 구할 수 있는 데까지 구한다 (2) 실전편∇
____2.5.3 최소제곱법
__2.6 현실적으로는 성질이 나쁜 경우(특이에 가까운 행렬)
____2.6.1 무엇이 곤란한가
____2.6.2 대책 예: 티호노프의 정칙화
3장 컴퓨터에서의 계산 (1) - LU 분해로 가자
__3.1 서론
____3.1.1 수치 계산을 얕보지 마라
____3.1.2 이 책의 프로그램에 대해
__3.2 준비 운동: 덧셈, 뺄셈, 곱셈, 나눗셈
__3.3 LU 분해
____3.3.1 정의
____3.3.2 분해하면 뭐가 좋나요?
____3.3.3 처음에 분해가 가능한가요?
____3.3.4 LU 분해의 계산량은?
__3.4 LU 분해의 순서 (1) 보통의 경우
__3.5 행렬식을 LU 분해로 구하다
__3.6 일차방정식을 LU 분해로 풀다
__3.7 역행렬을 LU 분해로 구하다
__3.8 LU 분해의 순서 (2) 예외가 발생한 경우
____3.8.1 정렬이 필요한 상황
____3.8.2 정렬해도 앞이 막혀버리는 상황
4장 고윳값, 대각화, 요르단 표준형 - 폭주의 위험이 있는지를 판단
__4.1 문제 설정: 안정성
__4.2 1차원의 경우
__4.3 대각행렬의 경우
__4.4 대각화할 수 있는 경우
____4.4.1 변수변환
____4.4.2 좋은 변환을 구하는 방법
____4.4.3 좌표변환으로서의 해석
____4.4.4 거듭제곱으로서의 해석
____4.4.5 결론: 고윳값의 절댓값 나름
__4.5 고윳값, 고유벡터
____4.5.1 기하학적인 의미
____4.5.2 고윳값, 고유벡터의 성질
____4.5.3 고윳값의 계산: 특성방정식▽
____4.5.4 고유벡터의 계산
__4.6 연속시간 시스템
____4.6.1 미분방정식
____4.6.2 1차원일 때
____4.6.3 대각행렬일 때
____4.6.4 대각화할 수 있는 경우
____4.6.5 결론: 고윳값(실수부)의 부호
__4.7 대각화할 수 없는 경우▽
____4.7.1 먼저 결론
____4.7.2 대각까지는 못하더라도 - 요르단 표준형
____4.7.3 요르단 표준형의 성질
____4.7.4 요르단 표준형으로 초깃값 문제를 풀다(폭주 판정의 최종 결론)
____4.7.5 요르단 표준형 구하는 법
____4.7.6 요르단 표준형으로 변환할 수 있는 것의 증명
5장 컴퓨터에서의 계산 (2) - 고윳값 계산 방법
__5.1 개요
____5.1.1 손 계산과 차이점
____5.1.2 갈루아 이론
____5.1.3 5×5 이상 행렬의 고윳값을 구하는 순서는 존재하지 않는다!
____5.1.4 대표적인 고윳값 계산 알고리즘
__5.2 야코비법
____5.2.1 평면 회전
____5.2.2 평면 회전에 의한 닮음변환
____5.2.3 계산 공부
__5.3 거듭제곱의 원리
____5.3.1 절댓값 최대의 고윳값을 구하는 경우
____5.3.2 절댓값 최소의 고윳값을 구하는 경우
____5.3.3 QR 분해
____5.3.4 모든 고윳값을 구하는 경우
__5.4 QR법
____5.4.1 QR법의 원리
____5.4.2 헤센버그 행렬
____5.4.3 하우스홀더법
____5.4.4 헤센버그 행렬의 QR 반복
____5.4.5 원점이동, 감차
____5.4.6 대칭행렬의 경우
__5.5 역반복법
부록
A. 그리스 문자
B. 복소수
C. 기저에 관한 보충
D. 미분방정식의 해법
__D.1 dx/dt = f(x)형
__D.2 dx/dt = ax + g(t)형
E. 내적과 대칭행렬·직교행렬
__E.1 내적공간
__E.2 대칭행렬과 직교행렬 - 실행렬의 경우
__E.3 에르미트 행렬과 유니타리 행렬 - 복소행렬의 경우
F. 애니메이션 프로그램 사용법
__F.1 결과 보는 법
__F.2 준비
__F.3 사용법
G. Ruby 코드 실행 방법
__G.1 mat_anim.rb
__G.2 mymatrix.rb
참고문헌
찾아보기
더보기접기
독자의견 남기기